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Expanding electric vehicle (EV) charging infrastructure is essential for transitioning to an electrified
mobility system. With rising EV adoption rates, firms face increasing regulatory pressure to build up
workplace charging facilities for their employees. However, the impact of EV charging loads on
businesses’ specific electricity consumption profiles remains largely unknown. Our study addresses
this challenge by presenting a mathematical optimisation model, available via an open-source web
application, that empowers business executives tomanage energy consumption effectively, enabling
them to assess peak loads, charging costs and carbon emissions specific to their power profiles and
employee needs. Using real-world data from a global car manufacturer in South East England, UK, we
demonstrate that smart charging strategies can reduce peak loads by 28% and decrease charging
costs andemissionsby9%compared toconveniencecharging.Ourmethodology iswidely applicable
across industries and geographies, offering data-driven insights for planning EV workplace charging
infrastructure.

Efforts to mitigate climate emissions in the transport sector strongly focus
on road vehicle electrification: 65% of commitments in nations’ revised
nationally determined contributions as of 2021 centre on electrification and
fuel-switching1. For road vehicle electrification to continue at pace in deli-
vering these commitments, widespread charging infrastructure at work-
places and public places is essential to achieve ‘convenience parity’ between
electric vehicles (EVs), referring to private passenger cars solely powered by
an electric battery and motor, and internal combustion vehicles2. Given the
significance of workplaces as car parking locations, EV charging at work-
places plays a crucial role in facilitating the rapid electrification of private
passenger transport. For instance, an estimated 21% of car-based trips and
25% of car-based kilometres were taken for commuting purposes in the UK
in20223. Furthermore, theproliferationofworkplacecharging is expected to
distribute the load of EV charging in space and time, thereby reducing the
evening peak of—and thus stress placed on—electricity distribution
networks4.

For workplace charging to contribute to the future landscape of energy
provision for EVs, workplaces must be incentivised to provide it. There are
two plausible benefits to workplaces installing chargers: providing charging
can help attract and retain workers5, and workplaces can aggregate EV
batteries to provide services to the electricity grid, representing an extra
stream of revenue6. Such grid services, including frequency response7 and

peak-shaving8, all ultimately result from the shifting (in time) and the
modulationof powerflows to and fromtheEVbattery9. The general concept
of optimising EV charging processes towards one or multiple objectives,
such asminimising charging costs or carbonemissionswhile ensuringusers’
state-of-charge (Soc) preferences are met, is referred to as ‘smart char-
ging’ (SC)10.

More broadly, from a system-level electricity network perspective, an
extensive body of research has analysed the synergetic effects of utilising SC
(V1G) and vehicle-to-grid (V2G) mechanisms as key enabler for active
control in distribution grids. To this end, Kempton and Tomić 11 computed
quantitative estimates of the relative fleet size of distributed V2G-capable
EVs, based on the US electricity system, to provide enhanced grid-stability
services. Similarly, Lund and Kempton12 modelled the demand-side flex-
ibility potential arising from V2G-enabled EVs to achieve higher penetra-
tion rates of renewables while reducing total carbon emissions. In practical
terms, to realise the full potential of V2G in active distribution grids,
advanced coordination mechanisms between EVs and grid operators are
required for participation in flexibility markets 13, typically managed by EV
aggregators14,15.

Apart from modern software to manage EV charging cycles, smart
infrastructure, including Internet-of-Things-enabled charge points, is
indispensable as the backbone of a more flexible, intelligent network,
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commonly referred to as ‘smart grid’16. Lopes et al.17 developed an extensive
framework showing the relation between technical management and
market operation for effective EV integration into power systems, drawing
out the hierarchical structure of different control levels between SC points
andEVs.More recently, Shang et al.18,19 havemodelled the interplaybetween
the operation of decentralised SCpoints and the decision for optimal energy
dispatching as cyber-physical system in the context of V2G scheduling. By
contrasting different network typologies with varying numbers of nodes
representing individual SC points, it delivers technical details on the engi-
neering implementation of smart charge point infrastructure.

In the workplace context, Zheng et al.20 found that workplace EV
charging has significant potential to provide grid services, benefiting both
the network operator and the EV owner. While there has been growing
research interest in the benefits of providing grid services from EV batteries
in recent years21–28, all the reviewed works in the literature have focused on
the level (or existence) of benefits to network operators or electricitymarket
agents21–24 and EV owners25–28. Generally speaking, though, the decision to
develop workplace charging infrastructure typically lies with the workplace
itself. There is a need for workplaces to understand the potential benefits of
installing and operating EV workplace charging infrastructure, including
the trade-offs between different charging strategies and their associated
impact on economic and environmental sustainability. However, there is a
notable research gap in the provision of methods, data and tools to
enable this.

To address this gap, we present a decision support tool for workplaces,
allowing them to visualise the potential benefits and trade-offs from
installing and operating EV charging infrastructure in terms of (i) reduced
electricity costs, (ii) the provision of local grid services through peak
minimisation and valley filling, and (iii) the reduction in carbon emissions
resultant from the vehicles’ charging. All of these benefits have direct or
indirect monetary rewards, which can be evaluated against the required
investments in building business cases for charging infrastructure installa-
tion, ultimately supporting the growth in EV charging infrastructure and
thus the viability of a rapid transition.

Our work contributes to the scientific discourse of EV workplace
charging in three ways: First, in terms of methodological advancement, we
utilise the core mathematical optimisation model by Ioakimidis et al.29 and
expand its analytical scope to include economic- and environmental
sustainability-related objective functions by drawing on a synthesis of
modelling approaches compiled by Zheng et al.30. Second, we apply the
augmented method in the context of a large-scale industrial manufacturing
site and compute quantitative estimates of key outputmetrics based on real-
world electricity consumption data. Third, fostering reproducibility and
replicability of our results and encouragingwider application of ourmethod
and the generalisable insights beyond the case study presented, wemake the
optimisation algorithms publicly accessible by turning them into an open-
source web app for academics and practitioners alike.

The novel contribution of this paper lies in the applicability of a linear
optimisation model for supporting complex decision trade-offs specifically
for workplace charging within a large industrial firm, utilising real-world
electricity consumption data and considering unique firm-specific factors,
such as shift patterns, and number of employee cars. The model integrates
linear optimisation with the goal of minimising peak electricity demand,
costs or emissions into a real-world, industry-specific context to inform
workplace decision making on EV charging infrastructure. Furthermore,
the open-source web application developed for this study empowers busi-
ness executives with a customisable, user-friendly tool that can be applied
directly to their sites, offering a practical solution that extends the utility of
existing optimisationmodels. This real-world application, coupled with the
transparency of the open-source web application, presents a contribution to
an identified gap in the literature.

The rest of this paper is organised as follows: First, we briefly introduce
the core case study-related information, before we present the main model
results obtained from the scenario analysis concerning varying EV adoption
rates. Subsequently, we assess the robustness of these model results by

conducting a temporal sensitivity analysis, i.e. computing 28 single-day
model runs for February 2023. Furthermore, we discuss the wider applic-
ability of this work beyond the case study presented and discuss limitations
and opportunities for further research. Lastly, we provide a detailed sum-
mary of the methods used.

Results
Core case study information
This case study examines a global car manufacturing firm with a pro-
duction site in South East England, UK, that exhibits steep increases in
electricity demand during plant operation. Given the high dependency
on manual labour for assembly-related tasks, employees’ arrival by car
at the plant before each shift coincides with the production ramp-up. If
EVs were to be charged in an uncontrolled (UCC) manner, this would
result in an additional peak, potentially surpassing the site’s power
capacity limit. Instead, SC shifts the load across the entirety of the work
shift, thereby decreasing the additional peak incurred from EV
charging.

Figure 1 provides a schematic overview of the site’s electricity demand
profile. For this study, we quantify the ‘value of smart charging (VoSC)’ by
introducing the ‘output change metric’ that measures the relative change [%
Δ] between SC and UCC for each key metric (ω), where ω captures the
resulting output in terms of maximum peak, total charging costs, or carbon
emissions. It is computed according to eq. (1):

VoSC ½%Δ� ¼ ωSC � ωUCC
� �

ωUCC
� 100 ð1Þ

The manufacturing environment operates on a two-gear shift pattern
for employees working in assembly, in addition to a single shift for office
staff. The morning shift (AM) operates between 06:15–16:00, followed by
the evening shift (PM) that runs between 16:15–02:00, with no production
taking place between 02:00–06:15.Working hours of office staff range from
08:00–16:00. Supplementary Fig. 5a provides a visual overview of the actual
electricity consumption profile of the industrial site, overlaid with the work
shift schedules. We estimated 1100 unique employee cars to be coming to
the workplace each day which we derived from real-world observations of
parked cars on-site using video footage (CCTV, drone imagery), provided
by our case study partner, at certain points throughout the day which are
indicativeof the carparks’occupancy levels during each shift. Further details

Fig. 1 | Schematic electricity consumption profile of industrial site.Note that this
figure is for illustrative purposes only, visually explaining the concept of load
shifting. In reality, charging loads of EVs, similar to the electricity consumption
profile of the plant, play out in irregular shapes.
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on the general modelling approach, in addition to case study-specific
assumptions and input parameters, are presented in the ‘Methods’ section.

Scenario analysis of EV adoption rate [%]
The initial analysis assesses the impact of increasing EV adoption rates on
the total electricity consumption profile of the industrial site. We selected
February 1st, 2023 as the reference date of analysis, as it exhibits a repre-
sentative consumption profile of a typical working day (cf. Supplementary
Fig. 5a), with a dip in demand during non-production hours (02:00–06:15)
when no employee cars are parked, followed by a steep increase in demand
as a result of production ramp-up.

We present the results from a prospective ‘what-if’ scenario analysis
with increasing EV adoption rates as an exogenous input parameter, ran-
ging from15 to 100% [Scenarios S1–S5: 15, 30, 50, 80, 100%], by quantifying
theVoSC for three different SCobjectives (model types): Peakminimisation
& valley filling (PM-VF), charging cost- (CCM), and carbon emission
minimisation (CEM). To compute the VoSC (eq. (1)), eachmodel output is
benchmarked against UCC with respect to the key output metrics max-
imum peak, total charging costs, and carbon emissions.

For uncontrolled charging (UCC), the results, across all models, reveal
that UCC leads to a substantial increase in electricity demand, coinciding
with the pre-existing electricity demand peak during the early morning
hours (06:00–09:00) as production activities ramp up. Due to more
employee cars parked on-site during the AM shift, a higher charging
demand during these hours leads to higher peak demand (Figs. 2–3). With
an EV adoption rate of 15% [S1], amounting to 142 EVs, UCC leads to an
7.4% higher peak load compared to the previousmaximumpeak (maxðPtÞ)
(Fig. 2). As more EVs are brought online, this effect exacerbates, leading to
29.9% higher peak loads for S3 (50% EV rate; 563 EVs) (Fig. 3); and 57.4%
for S5 (100% EV rate; 1100 EVs) (Supplementary Fig. 4). This ‘dumb’
charging strategy serves as a reference to benchmark the outputs of the three
objective functions against (Fig. 6).

When the PM-VF model is deployed, the optimiser computes a
strategy that selectively schedules charging loads only during times of low
overall electricity demand (Pt), hence ‘filling local valleys’with additionalEV
charging loads, as the objective function (eq. (2)) penalises larger deviations
from the constant C (eq. (5)) (higher peaks) with a squared term.

Figure 2a shows that optimising for PM-VF for S1 (15% EV rate) does
not incur any additional peak demand compared to maxðPtÞ, hence redu-
cing peak demand by 7.4% compared to UCC (Fig. 2d). As the EV rate
increases, the total charging demand grows to an extent where valley filling
through load shifting does not suffice tomeet the total demand, as shown in
Fig. 3a (50% EV rate) and Supplementary Fig. 4a (100% EV rate), hence
forcing the resulting electricity consumption profile to shift upwards.
However, the resulting mostly flat total energy demand curve outperforms
UCC in terms of reduced peak demand by 21.3% (Fig. 3d) and 28.5%
(Supplementary Fig. 4d) for 50% and 100% EV adoption rates, respectively.
Regarding charging costs and carbon emissions, PM-VF reduces total
charging costs by8.9%, 10.0%and9.3%(Fig. 2d; SupplementaryFig. 4d) and
total carbon emissions by 10.5%, 10.7% and 9.6% (Fig. 2d; Supplementary
Fig. 4d) for EV rates of 15, 50, 100%, respectively. This is because total
charging demand is evenly spread across times of high and low electricity
prices andgrid carbon intensity rates, in contrast toUCCwhere themajority
of the charging load coincides with hours of high electricity prices and
carbon-intensive grids.

Figure 4a summarises the outputs (VoSC[%Δ]) obtained from PM-VF
regarding the three main metrics maximum peak, total charging costs and
resulting carbon emissions, including the two intermediary scenario cases of
EV rates S2 = 30% and S4 = 80%. Results from the single-day analysis (01
February, 2023) show that model type PM-VF achieves substantially lower
peaks with a reduction potential of up to 28.5%, while simultaneously
reducing charging costs and carbon emissions by 9.3% and 9.6%, respec-
tively, in a relatively stable manner across all five scenarios.

Formodel type charging costminimisation (CCM), the optimiser shifts
charging to times of low electricity prices (Fig. 2b), where the electricity price

systemused inouranalysis is definedby thehalf-hourlyOctopusAgileTime-
of-Use (ToU) tariff 31, captured by the variable λt.While this strategy leads to
the lowest total charging costs, amounting to cost savings of about 19% and
~15% carbon emissions savings across all scenarios compared to UCC
(Fig. 2b; SupplementaryFig. 4b), it becomesapparent that thesegainsaremade
by compromising on maximum peak demand reduction potential. Quanti-
tatively, this trade-off betweenminimising for charging costs at the expense of
higherpeakdemand intensifies as theEVadoption rate increases, from3.2%of
peak reduction potential in S1 (15% EV rate) (Fig. 2e) to an increase in
maximum peak by 4.9% compared to UCC in S5 (100% EV rate) (Supple-
mentary Fig. 4e). This relationship between minimising charging costs at the
expense of increasing peaks for model type CCM is summarised in Fig. 4b.

For CEM—given the high correlation (ρ = 0.8) between charging costs
λt and carbon emissions γt mainly due to carbon-intensive energy pro-
duction methods (gas-fired power plants) during peak times—the results
obtained for CEM turn out to be similar to CCM in terms of the overall
trend. CEM yields carbon savings in the range of 17.4–19.3% across the
various scenarios S1–S5 (EV rates: 15–100%) (Fig. 2f; Supplementary Fig.
4f). In contrast, optimising for overall lowest emissions increases total
charging costs in direct comparison to CCM on average by about 4.5%-
points. However, when measured against UCC, our results (VoSC[%Δ])
suggest that total charging costs for CEM are still considerably lower by
~14.5% across all scenarios S1–S5 (EV rates: 15–100%) (Fig. 2f; Supple-
mentary Fig. 4f).

Whenassessing the impact onmaximumpeakdemand, the same trend
of increasing peaks holds true for CEM as observed for model type CCM,
however, not to the same extent. While CCM leads to substantially higher
maximumpeaks compared toUCC, in the case of CEMthemaximumpeak
demand appears to be only slightly larger in magnitude (S5: 1.6%; EV rate:
100%) (Supplementary Fig. 4f). Fig. 4c visualises the trade-off between
optimising for CEM and the resulting effect of increasing maximum peak
demand as a function of various EV adoption rates (S1–5: EV rates
15–100%). All results (VoSC[%Δ]) obtained from the scenario analysis with
respect to varying EV adoption rates are reported in Supplementary Table 1
in numeric terms. In summary, we observe three threshold effects:

(1) For PM-VF, as the EV rate increases from 50% [S3] to 80% [S4],
‘valley filling’ as optimisation strategy to shift charging loads to times of
lower overall electricity demand (Pt) does not suffice anymore to meet the
total EV charging demand. Hence, the resulting electricity consumption
curve is shifted upwards (Pt+ yt) which reduces the marginal savings
potential (ΔVoSC) [Δ(%Δ)] concerning the key metric maximum peaks, as
shown by the flattening slope of the curve (Fig. 4a).

(2) For CCM and CEM, our results indicate a similar trend of
decreasing marginal gains, i.e. savings potential in terms of lowering char-
ging costs or total emissions, as the EV rate surpasses the threshold of 50%
[S3] (Fig. 4b, c). This effect can be explained by a diminishing level of
flexibility for the optimiser to shift charging loads to times of lowest elec-
tricity prices or low-carbon intensive grid conditions, as the EV rate rises.
More precisely, the optimality space is further constrainedby the increase in
total charging demand (yt), as the binding condition pertaining to each EV
to receive the requested charge (ET+1) before departure (cf. eq. 12) becomes
more restrictive.

(3) Lastly, for both CCM and CEM, rising EV adoption is associated
with increasingmaximumpeaks, even to the extent of exceedingUCC-levels
[S5]. The effect size of this observed relationship is greatest at the threshold
between EV rate = 50% [S3] and 80% [S4] (Fig. 4b, c). This exhibited trend
can be traced back to the nature of a single objective model formulation. In
practical terms, this means that the optimiser schedules charging processes
to take place during the most optimal times of low electricity prices or low
carbon-intensive grid conditions while adhering to all other constraints, for
instance limitations on physical charge point infrastructure related to
maximum charging power rate [kW] (cf. eq. 14), without considering any
other possibly desirable secondary objective. Hence, this results in a trade-
off space, unless a more advanced bi-objective modelling approach is
implemented.
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Temporal sensitivity analysis
Building upon prior results presented for a single-day analysis (01 February,
2023) adopting the structure of three objective functions measuring three
key output metrics for five EV adoption scenarios, we now apply the same
methodological structure to a multi-day analysis spanning 28 consecutive
days in February 2023 as empirical focus. Augmenting the unit of analysis
from a single-day to a month-long time horizon, encompassing 28 indivi-
dualmodel runs, allows us tomeasure the effects of varying exogenous time-
dependent input parameters on the overall sensitivity of the model results.
These parameters include (i) the industrial site’s electricity consumption

curve (Pt), (ii) theToUelectricity tariff (λt), and (iii) the grid carbon intensity
profile (γt) (cf. Fig. 6). Ultimately, these insights help us assess the gen-
eralisability of the prior single-day analysis based on real-world empirical
data, allowing us to derive conclusions concerning the overall robustness of
the model results.

Figure 5provides anoverviewof the results obtained fromthe temporal
sensitivity analysis for (a) PM-VF, (b) CCM and (c) CEM, in each case
visualising the variability of daily output measures pertaining to the three
key metrics maximum peak (blue), charging costs (orange), and carbon
emissions (green) for all five EV adoption rate scenarios [S1–5: 15–100%].

a d

b

c

e

f

Fig. 2 | Charging profiles differentiated by model type for scenario 1 [S1: EV
rate=15%]. Time-series analysis of daily charging loads for each objective function.
Visualising the impact of EV workplace charging for (a) PM-VF, (b) CCM and (c)
CEM by contrasting the resulting total electricity demand curve (Pt+ yt) with the
site’s electricity consumption profile Pt only and the total charging load incurred
fromUCC (Pt+UCC), in addition to plotting the exogenous price (λt) [p/kWh] and

grid carbon intensity (γt) [gCO2/kWh] parameters. Quantifying the ‘Value of smart
charging (VoSC)’ (relative change in output [%Δ]) for each model type (d) PM-VF,
(e) CCM and (f) CEM, measured against UCC, for the three key metrics max. peak
demand [kWh], total charging costs [£] and total carbon emissions from charging
[kgCO2]. Note that the y-axis displays normalised values, relative to the mean
electricity consumption of February 2023.
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Drawing from the results, we derive two main insights:
(1)On average, the respective key outputmetric of eachmodel type, i.e.

maximum peak for PM-VF, charging costs for CCM and carbon emissions
for CEM, exhibits the highest absolute output changes (∣%Δ∣), i.e. largest
absolute savings potential, when benchmarked against UCC, across all EV
adoption rate scenarios (Fig. 5a–c). This indicates that each model type
achieves its respective objective by computing efficient charging strategies
aligned to the respective goal of peak-, charging costs- or emissions
minimisation.

(2) Contrary to model types CCM and CEMwhich yield output results
that are fairly constant (Fig. 5b, c), i.e. exhibiting low levels of variability across
EV adoption rate scenarios, we observe that for PM-VF variability decreases
substantially as the EV rate increases, hence making the outcome more

predictable (Fig. 5a). This trend applies to all three key output metrics, most
prominent in termsofmaximumpeak.Visually, this canbeobserved fromthe
reduction in length of the interquartile range (IQR) of the respective boxplots.

In summary, while our analysis shows that each model type achieves
optimal results for its specific objective by computing efficient charging
strategies, it also reveals that trade-offs between individual goals are inevitable.

Discussion
Expanding the existing charge point infrastructure to fuel the transition to
an electrified transportation system remains an ongoing challenge.With the
predicted accelerated uptake of EVs amongwider adopter groups32, moving
from early adopters to the early majority33, there is mounting pressure on
firms to invest in the expansion of EV charge points in their employee car

b

c

a d

e

f

Fig. 3 | Charging profiles differentiated by model type for scenario 3 [S3: EV
rate= 50%]. Time-series analysis of daily charging loads for (a) PM-VF, (b) CCM
and (c) CEM.Quantitative assessment of relative change in output (VoSC, [%Δ]) for

each model type (d) PM-VF, (e) CCM and (f) CEM, measured against UCC, for the
three keymetricsmax. peak demand [kWh], total charging costs [£] and total carbon
emissions from charging [kgCO2].
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parks. According to a recent industry report by ChargeUK, the number of
workplace chargers is expected to increase five-fold by 2030 in order to keep
pace with the predicted EV adoption rates34.

Planning the expansion of charging points, along with the associated
technical and economic challenges, has predominantly been the responsi-
bility of local and regional networkoperators.Consequently, the capacity for
individual firms to conduct predictive impact assessments of the additional
loads fromEVcharginghas thus far beensignificantly limited, primarily due
to a lack of internal energymanagement capabilities. Similarly, we identified
a gap in academic literature that addresses the role and responsibilities of
individual firms to engage in planning activities related to the build-out of
EV workplace charging infrastructure (cf. Introduction).

Our research addresses this gap by taking on the perspective of
workplaceoperators as key agents inplanning the transition to a low-carbon
energy systemwith close interactionswith themobility sector.We show that
large-scale, uncontrolled deployment of EV workplace charging can cause
severe system inefficiencies, leading to significantly higher peaks, increased

charging costs and greater carbon emissions. Conversely, the use of
advanced control mechanisms and well-orchestrated SC strategies can
result in substantial savings, offering several co-benefits in economic and
environmental sustainability terms.

The results obtained from the temporal sensitivity analysis indicate
that the deployedmodels yield robust outcomes to time-variant parameters,
repeatedly outperforming UCC in the respective key metrics. However, we
also show that in the case of CCM and CEM, a single-objective model
formulation can jeopardise the relative performance of the respective other
metrics, such as maximum peak, which are not jointly optimised for, once
the EV adoption rate exceeds a certain threshold. This highlights that trade-
offs between various objective functions and the associated outcomemetrics
are inevitable. We derive these insights based on iterative testing of the
models in changing environments, as evidenced in the real world.

b

c

a

Fig. 5 |Overview ofmodel results, grouped bymodel type, for increasing EV rates
[S1–5: 15–100%], computed over a 4-week long time frame [Feb 2023]. Statistical
analysis of 28 single-day model results, capturing output changes (VoSC, [%Δ]),
measured against UCC, for each model type (a) PM-VF, (b) CCM and (c) CEM by
plotting the variability of the key output metrics (i) max. peak (blue), (ii) charging
costs (orange) and (iii) carbon emissions (green) using boxplots as visualisation tool.
Note: Lower %Δ numbers (y-axis) refer to higher saving potentials.

b

c

a

Fig. 4 | Visual summary of key metrics max. peak, charging costs and carbon
emissions differentiated by model type for increasing EV rates [S1–5: 15–100%].
Quantitative assessment of output changes (VoSC, [%Δ]), measured against UCC,
for (a) PM-VF, (b) CCM and (c) CEM. Note: Lower %Δ numbers (y-axis) refer to
higher saving potentials regarding each output metric.
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Abstracting from the case study presented,we argue that themethodof
quantifying estimates of savings potential incurred from deploying SC
solutions,measured in economic and environmental sustainability terms, is
transferable to other contexts of EV charging in which passenger cars are
parked for an extended period. This applies, for instance, to non-industrial
workplace settings (office buildings only), workplaces in other sectors
(hospitals, universities), or in settings of mid- to long-duration destination
parking (gym, cinema, train stations, airports etc.). Generalising from our
study,we infer that theVoSC[%Δ] hinges on (i) the seasonality and location-
based variability of grid carbon intensity levels, (ii) market-based price
signals induced from different ToU electricity tariffs, (iii) key modelling
assumptions related to EVs’ SoC levels, (iv) the ratio of total number of EVs,
their respective SoC levels, in direct relation to the site’s total electricity
consumption levels (Pt) and closely related, (iv) the general shapeof the site’s
electricity demand curve.

In summary, our study highlights the complexity of planning the low-
carbon transition to electrified passenger transportation in the context of EV
workplace charging. We show that this process necessitates a multi-faceted
approach that combines futureEVelectricitydemandscenarioplanningwith
firm-specific cost- and carbon-budgeting, as well as grid-planning activities.

Given certain restrictions concerning themathematical formulation of
the core optimisation problem and limited access to real-world data, the
model exhibits several limitations. First, the reduction in charging power
from constant current to constant voltage (CC-CV) once a certain battery
charge level has been reached (typically SoC ≥ 80%)—a technical require-
ment from an electrical engineering point of perspective—is not reflected in
the optimisation tool. Hence, the total charging duration to reach the final
20% SoC level takes longer in reality. However, given that the primary focus
of the optimisation tool is to empower business executives to assess the
broader implications of EV workplace charging for their firm-specific
metrics,we argue that the current version of the tool delivers thesehigh-level
planning insights to a satisfactory degree. Second, given that there are no
industrial ToU electricity tariffs available in the UK at the point of writing,
we opted for the Octopus Agile tariff, which is available to residential cus-
tomers. Third, we acknowledge certain limitations with respect to model
parametrisation, including assumptions regarding the distribution of bat-
tery SoC levels upon arrival and minimum charge requirements upon
departure due to a lack of real-world data from the collaborating partner.
Fourth, chargingprofiles in this studyare simulated, not basedon real-world
observations, given that themanufacturingfirm, our case study partner, was
still at the planning and contracting stage and had not yet installed charging
stations. We chose not to draw on static, non-flexible EV charging loads
from real-world EV trials due to the particular study design which neces-
sitated SC loads tobemodelled endogenously, allowing for sufficientdegrees
of freedom to schedule EV-specific charging cycles by factoring in (i) EV-

specific arrival and departure times, (ii) firm-specific exogenous electricity
consumption patterns and (iii) external, market-driven signals, including
time-varying electricity prices and grid-carbon intensity levels. This allowed
us to assess the firm-specific demand-side flexibility potential arising from
SC, respective to three different charging strategies. Fifth, we acknowledge
that due to limited provision of electricity demand data from our case study
partner, covering February–June 2023 only, we were unable to perform a
whole year temporal sensitivity analysis. However, it is important to note
that electricity infrastructure is designed to operate within a specified
margin, determined by the size of demand that piece of infrastructure is
serving at peak conditions35, which in the UK andNorthern Europe usually
occurs onwinter weekdays. This period sees increased private car use due to
reduced active travel in colder temperatures36 and peak electricity demand
from heating, lighting and industrial activities37. Hence, we chose February
2023 to compute our results across three metrics and for three objective
functions to be able to provide relevant insights for a reference month in
which critical peak demand is observed.

Beyond validating the model with real-world mobility data, we identify
opportunities for further research in the followingareas: First, themodel could
be expanded to include a charge point allocation algorithmbased on priority-
based ruling, for instance, for EVs with lower initial SoC levels. Second,
enhancing the web app to include an economic cost-benefit decision support
mechanismfordetermining theoptimalnumberofEVchargepoints to install
represents another avenue for further research. Third, expanding the system
boundarieswouldallow for theevaluationofhowvaryingdegreesof employee
access to charge points outside the workplace, as well as users’ preferences for
charging locations in relation to specific tariff structures, impact the firm’s
overall electricity demand. Lastly, evaluating the implications of incorporating
bidirectional (Vehicle-to-Grid, V2G) charging capabilities into the existing
model framework could provide additional valuable insights.

Methods
This section is structured as follows: First, we introduce the overall mod-
elling framework. Second, we describe the methodological approaches
pertaining to parametric assumptions and time-series data used for the case
study. Third, we outline the complete mathematical model formulation,
including a full list of constraints and nomenclatures of variables, sets and
parameters. Fourth, we elaborate on the choice of threshold values relevant
for the prospective ‘what-if’ scenario analysis.

Modelling framework
Our study quantifies the impact of EV workplace charging on an industrial
site’s electricity demand profile based on three different optimisation goals.
To this end, we developed a modelling framework, outlined in Fig. 6, that
consists of four steps:

Fig. 6 | Schematic overview of our modelling framework. Step 1 Specification of
input parameters, including time-series data. Step 2 Selection of model, assessing (i)
peakminimisation& valley filling (PM-VF), (ii) charging costminimisation (CCM),
or (iii) carbon emission minimisation (CEM) against uncontrolled charging (UCC).

Step 3 Scenario analysis with varying EV adoption rates [%] on a daily & monthly
scale. Step 4 Computation of model results for each objective function, incorpor-
ating parametric and temporal scenario analysis, benchmarked against UCC in
relative terms (VoSC, [%Δ]).
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First, we input parametric assumptions specifying (1) the number of
working shift patterns with their respective start and end times, (2) the total
number of vehicles coming to the workplace each day with a relative dis-
tribution [%] assigned to each shift, (3) the considered EV battery capacity
sizes and (4) assumptions regarding initial and final SoC levels, the latter
being specified by EV users as minimum charge expectation. Subsequently,
an EV parking availability matrix is generated which serves as core mod-
elling input, alongside time-series data specifying the (5) electricity demand
profile of the industrial site, (6) a ToU electricity tariff and (7) the grid
carbon intensity profile, all in 15-min time intervals.

Second, we select the respective model of interest, each differing in
terms of model objective: (a) grid performance objective: PM-VF, (b) eco-
nomic objective: CCM, and (c) environmental objective: CEM. Eachmodel
is assessed against an UCC strategy, in which the charging process starts
upon plug-in at arrival, without the flexibility of load shifting.

Third, with a fixed EV availability matrix, we then compute a scenario
analysis, measuring changes to the output (in %Δ) by varying the EV
adoption rates according tofive scenarios [S1–5], ranging from15% to100%
[S1–5: 15, 30, 50, 80, 100%].

Fourth, and lastly, we augment the single-day analysis to a monthly
analysis by iterating over each day in a respectivemonth (for this case study:
February 2023), hence capturing the changes incurred from varying time-
series inputs (electricity consumption profile of industrial site, ToU elec-
tricity tariff, grid carbon intensity profile). All outputs obtained from the
sensitivity analyses are reported in percent-changes [%Δ],measured against
the UCC strategy for each EV adoption rate scenario [S1–5].

Input parameters
For the case study presented, we analysed a manufacturing environment
that operates on a two-gear shift pattern for employeesworking in assembly,
in addition to a single shift for office staff.We estimated the total number of
vehicles in the parking lot at 1100 per day, with a relative allocation of 63%,
27% and 10% of all cars to each shift (AM, PM, office), respectively.

Catering for different EV model types, we assumed battery capacity
sizes to be uniformly distributed according to three levels (48, 71, 100 kWh)
whichwe derived based on expert elicitation and current EVmanufacturing
market trends. To model heterogeneity in charging demand, we modelled
initial SoC levels (Eini

m ) of each EV’s battery upon arrival at the workplace to
be randomly distributed between 10% (lower bound, LB) and 80% (upper
bound, UB), and similarly between 80% (LB) and 100% (UB) as minimum
SoC requirement (Efin

m ) upon departure, to be specified by the respective EV
user. While these parametric assumptions have been chosen to reflect the
case study of analysis, the open-source web application (cf. Supplementary
Fig. 1) allows forflexible inputdata entry to assist practitioners indeveloping
bespoke scenarios, to be aligned with firm-specific real-world settings.

Based on the specified input data, an array of agents representing
individual EVs with their associated parameters (arrival and departure
times, EV battery capacity sizes, SoC levels) is generated. Depending on the
scenario selected, the binary EV availability matrix, indicating whether the
respective EVm∈M is parked and available for charging at time step t∈ T
(step size: τ = 15min) (fmt = 1), or not (fmt= 0) (cf. eq. (8)), varies in number
of entries, ranging from 142 [S1: 15% EV rate] to 1100 [S5: 100% EV rate].
While S1 has been calibrated to represent the real-world setting of the global
car manufacturer in terms of actual EV adoption rate (15%) in 2023, for S5
we assume a future scenario in which all 1100 employee cars are fully
electrified (EVs).

Subsequently, the exogenous time-series data pertaining to each firm’s
bespoke electricity consumption profile Pt, in addition to the location-
dependent market-based ToU electricity tariff λt (Octopus Agile Tariff 31)
and UK-wide grid carbon intensity profile γt (NationalGridESO38) is
inputted, either via manual .csv-file upload (Pt; cf. Supplementary Fig. 1) or
pulled via API integration (λt; γt) based on the date(s) specified. Supple-
mentary Fig. 5 displays these exogenous time-series data for Pt, λt and γt.

In summary, our study uses a mix of real-world data, combining (i)
firm-specific data from a global car manufacturer (electricity consumption

profile [kWh], work shift pattern, number of employee cars parked on-site
during each shift), (ii) general market data (Octopus Agile ToU tariff, grid
carbon intensity profile, selected EV battery sizes), in addition to (iii)
simulated assumptions (EVs’ SoC levels upon arrival and departure, EV
adoption rate scenarios [S1–5; %]).

Formulation of mathematical optimisation problem
Drawing from operations research methods on mixed-integer linear pro-
gramming and quadratic optimisation, the core module of this study builds
upon prior work by Ioakimidis et al.29 and Zheng et al.30. We define three
objective functions, each representing a different model:
• Peak minimisation & valley filling (PM-VF)

min: zPM�VF ¼
X
t2T

ðPt þ yt � CÞ2; ð2Þ

where zPM−VF captures the objective function value, Pt refers to the
industrial site’s electricity demand profile, yt is the total load fromEV
charging and C is a constant (eq. (5)).

• Charging cost minimisation (CCM)

min: zCCM ¼
X
t2T

yt � λt ; ð3Þ

where zCCM captures the total charging costs and λt refers to the real-
time electricity prices, as set by the ToU electricity tariff.

• Carbon emission minimisation (CEM)

min: zCEM ¼
X
t2T

yt � γt : ð4Þ

where zCEM captures the total carbon emissions and γt represents the
marginal carbon emissions rate, also referred to as the grid carbon
intensity, per kWh.
Also, note the following:

C ¼ maxðPtÞ þminðPtÞ
2

; ð5Þ

yt ¼
X
m2M

xmt � f mt 8t 2 T; ð6Þ

0≤ xmt ≤ pmax 8m 2 M; t 2 T; ð7Þ

where xmt is the core decision variable (DV), defined as non-negative
real number xmt 2 R≥ 0 and capped by the maximum charging
power rate pmax as upper bound (eq. (7)), that captures the charging
profile for each EVm∈M, for all t∈ T. Furthermore, fmt represents
the exogenous (binary) EV availability matrix (eq. (8)), defined as:

f mt ¼
1; if EVm 2 M is parked at the workplace at time t 2 T

0; otherwise :

�

ð8Þ

In eachmodel, the optimiser computes the optimal charging profile for
each EV m∈M, where M refers to the total set of EVs, assuming perfect
foresight of each car’s parking duration and stochastic arrival and
departure times.

Each objective function (eq. (2)–(4)) optimises towards a certain goal.
For PM-VF, themodel draws on techniques fromquadratic optimisation to
compute an efficient charging strategy that reduces overall peaks, hence,
aiming tominimise the least-square difference between the sumof the fixed
electricity demand profile Pt and the variable EV charging load yt (DV) at
each time step t and a constant C, defined as the average value of max(Pt)
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andmin(Pt) on a daily basis (eq. (5)). For CCM and CEM, the model takes
on the formof amixed-integer linear programme (MILP)with the objective
ofminimising total charging costs (CCM) or total carbon emissions (CEM)
by computing the sumproduct of total charging demand yt (DV) and λt, the
ToUelectricity price tariff, or γt, the grid carbon intensity profile. The results
of each optimisation task are stored in the respective objective function
variable zPM−VF, zCCM and zCEM which constitutes the core output data for
the three keymetricsmax. peak demand [kWh], total charging costs [£] and
total carbon emissions [kgCO2]. These model results are subsequently
benchmarked against UCC, in which case charging of EVs m ∈ M is
assumed to initiate directly after plug-in upon arrival at the workplace, by
computing the VoSC (eq. (1)).

For all models (eq. (2)–(4)), several constraints ensure that (i) charging
only takes place while EVs are being parked at the workplace, (ii) the final
battery SoC levels, as requested by each EV user, are achieved and (iii) total
battery capacity is not exceeded. A complete overview of the full model
formulation is provided in Table 1.

Each constraint serves a distinct purpose: Eq. (10) captures the
total charging load at each time step t ∈ T in a dedicated auxiliary
variable (AV) yt by summing over all individual EVs m ∈M. Eq. (11)
defines the boundary conditions, enforcing that charging stays within
the physical limits of the battery capacity size of each EV m. Similarly,
eq. (12) ensures that the minimum charge requirement, specified by the
EV user and captured in the exogenous parameter ET+1, is delivered
prior to departure. The resulting battery charge level is subsequently
stored in the AV Efin

m . Eq. (13) is a logic operator, linking xmt with the
binary EV availability matrix fmt (eq. 16) in a way that forces xmt = 0
whenever EV m at time step t is not parked at the workplace (fmt = 0).
Finally, eq. (14) defines the range of DV xmt, limiting charging per time
interval t to stay within the limits of the maximum charging power rate
of the respective hardware charge point infrastructure (11 kW for our
case study).

In summary, Table 2 provides an overview of the nomenclature by
listing all sets, parameters and variables used throughout the mathema-
tical model.

Scenario development
We define five different scenarios (S1–S5) that capture the degree of EV
adoption [%] relative to the total stock of employees’ cars. To this end, we
chose specific threshold values [S1–S5: 15, 30, 50, 80, 100%] that mark
crucial points along the S-curved technology adoption pathway33. It is
predicted that by~2055, 100%of all vehicles in theUKwill be electric, with a
rapid transition from20% to80%occurring in just 8 years between2033 and
204132.More in-depth insights concerningEVadoptionpathways ona local,
highly spatially granular level can be derived from a dedicated open-source
‘S-Curve Adoption Tool for EVs’ (SCATE), developed by the Energy and
Power Group at the University of Oxford.

Data availability
Thedatasets analysedduring the current study are not publicly available due
to commercial sensitivity but are available from the corresponding author
on reasonable request.

Code availability
The programming source code was written in Python using the Pyomo39

library formathematical optimisation. It is accessible onGitHub via https://
github.com/segermarcel/EVWorkplaceChargingPublic.
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